What can human medicine do to control antibiotic resistance?

Dag Berild MD DrMSci Professor Infectious Diseases OUS/UIO/OsloMet Oslo Norway

Gonorrhea is not a serious disease, but...

J Antimicrob Chemother 2012; **67**: 2059–2061 doi:10.1093/jac/dks188 Advance Access publication 17 May 2012 Chemotherapy

The ticking time bomb: escalating antibiotic resistance in *Neisseria gonorrhoeae* is a public health disaster in waiting

David M. Whiley^{1,2}*, Namraj Goire^{1,2}, Monica M. Lahra³, Basil Donovan^{4,5}, Athena E. Limnios³, Michael D. Nissen^{1,2,6} and Theo P. Sloots^{1,2,6}

Antibiotics & resistance

• Antibiotics kill bacteria (not virus)

• Antibiotic resistance (AMR) means that antibiotics can not kill the bacteria

 Accoring to WHO AMR is one of the greatest threats to public health

Mortality rate USA 1900-2000. Armstrong, JAMA 1999;281:61-6

Figure 2. Crude Mortality Rates for All Causes, Noninfectious Causes, and Infectious Diseases

1586 tilfeller av pneumokokk-pneumoni 1929-35 i Boston (Tilghman RC, Finland M. Arch Intern Med, 1937)

We are already in the post-antibiotic era in Europe

Figure 3.11. *Klebsiella pneumoniae*. Percentage (%) of invasive isolates with resistance to carbapenems, EU/EEA countries, 2016

Antibiotics in agriculture

- Animals: 70% «growth promotors»
 - frequent use
 - low dosages
 - low hygiene
 - crowding
- 43 mill AB doses/day
- Illegal use widespread

Dear president Trump

What happens when we give antibiotics?

• We can kill the patogenic bacteriae

 But, simultaneously we select resistant bacteria from the normal bacterial flora

No new antibiotics the last decades

Is there ligth in the tunnel?

We can reduce antimicrobial resistance

- Reduce AB use
- Right drug, dose, and duration
- Making more accurate and rapid diagnoses
- Prohibit AB as growth promotors in husbandry
- Vaccinate

Antibiotic stewardship programs leads to reduction of

• Anibiotic use

- Antibiotic resistance
 - Hospital stay
- Antibiotic associated diahorrea
 - Clostridium difficile
- Reduced **costs**

Core elements in antibiotic stewardshiop programs • Easily available antibiotic guidelines – App

Increase compliance to guidelines

• Shortening of duration of therapy

Decrease use of broad-spectrum antibiotics

To avoid resistance you must finish the antibiotic course

• No, it is a myth

• It is an evidence free area

• The longer treatment, the more resistance

Duration of treatment (days) in hospitals

Gap between new knowledge and practice

	Guidelines	New evidence
Pneumonia	7-14	3-5
Ventilator associated Penumoniae (VAP)	10-14	7-8
Pyelonephritis (Renal infection)	10-14	7
Peritonitis (Severe abdominal inf.)	7-10	4
Exacerbation of chronic bronchitis	7-10	<5
Gram-neg. sepsis	10-14	8

Human medicine can decrease resistance and prolong life of current antibiotics

• Political/administrative leadership commitment

National and global action plans (one health approach)

- Sustainable interventions
 - Digital support systems
 - Physicians must be forced to comply

• More rapid and presice diagnostic tools

Improved use of antibiotics in a paediatric dept.

Effects of interventions are not sustainable

Norwegian action plan: 30 % reduction in AB use 2012-2020

Variation in antibiotic use. Respiratory tract infections Norway

Take home message

- Rational antibiotic use lead to reduction of antimicrobial AMR and costs
- Profylactic AB use in animals must be prohibited
- Vaccination can reduce AMR
- It is a myth that finishing the antibiotic course prevent antibiotc resistance!

Thank you

Antibiotic stewardship 2018

Which intervention works?

• Education?

- physcians, general population, school children

- Restrictions
- Academic detailing
- Audit and feed-back
- Digital systems with descison support

 automatic stoporder

Revison of antibiotics after 48-72 h.

• > 85 % of bacteriological samples available

 Allows narrowing (de-escalation) of broadspectrum therapy

• Leads to less resistance

Rational antibiotic use is

• Giving effective antibiotics with the most limited impact on the normal bacterial flora.

- Choice of antibiotics
- Dosage
- Duration

	MDR GNB	Events/patient-days		Incidence ratio (95% CI)
		Before	After	
Apisarnthanarak et al ¹⁸	MDR Pseudomonas aeruginosa	13/2889	1/1324 -	• 0.08 (0.00-1.41)
Marra et al ³¹	Imipenem-resistant A <i>cinetobacter baumannii</i>	23/8421	2/8066 -	
Apisarnthanarak et al ¹⁸	XDR A ɓaumann ii	33/2889	2/1324 -	• 0.13 (0.03-0.55)
Takesue et al ³²	Metallo-β-lactamase GNB	27/698794	6/635794	0.24 (0.10-0.59)
Cook and Gooch ³⁷	Carbapenem-resistant P deruginosa	44/220474	13/261318	0.25 (0.13-0.46)
Peto et al ⁴²	MDR Paeruginosa	2/4280	1/4217 -	• 0.25 (0.01-5.63)
Takesue et al ³²	MDR GNB	39/698794	10/635794	0.28 (0.14-0.56)
Arda et al ³⁶	Meropenem-resistant Ac <i>inetobacter</i> spp	28/285606	10/308852	0-33 (0-16-0-68)
Leverstein-van Hall et al f s	MDR Enterobacteriaceae	9/19 142	4/23583	0.36 (0.11-1.17)
Yeo et al ²³	Carbapenem-resistant P deruginosd	17/20469	8/21798	0.44(0.19-1.02)
Arda et al ³⁶	Meropenem-resistant P aeruginosa	8/285606	4/308852	0.46(0.14-1.54)
Marra et al ³¹	lmipenem-resistant Klebsiella pneumoniae	6/8421	3/8066	• 0.52 (0.13-2.09)
Marra et al ³¹	lmipenem-resistant <i>P</i> aeruginosa	15/8421	8/8066	0.56 (0.24–1.31)
Arda et al ³⁶	Meropenem-resistant A baumannii	45/285606	29/308852	0.60(0.37-0.95)
Meyer et al ³⁴	lmipenem-resistant <i>P</i> aeruginosa	34/13502	33/21420	0.61(0.38-0.99)
Yeo et al ²³	Carbapenem-resistant A baumannii	10/20469	9/21798	• 0.85 (0.34-2.08)
Zou etal ²⁰	Meropenem-resistant P aeruginosa	185/834560	172/883500	0.88 (0.71-1.08)
Niwa et al ²⁵	lmipenem-resistant <i>P</i> aeruginosa	11/128146	15/113873	<u>−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−</u>
Aubertetal ⁴³	Imipenem-resistant P aeruginosa	49/5100	44/2548	→ 1·80(1·20-2·70)
Overall				0.49 (0.35-0.68)
ľ²=76·2%, p=0·000			Ľ	
			0	
			1	Antibiotic stewardship Antibiotic stewardship programme effective programme not effective

Figure 2: Forest plot of the incidence ratios for studies of the effect of antibiotic stewardship on the incidence of MDR GNB GNB=Gram-negative bacteria. MDR=multidrug-resistant. XDR=extensively drug-resistant.