
Exam 2022 fall solution proposal

rm(list = ls())

library(dplyr)

##
## Attaching package: ’dplyr’

## The following objects are masked from ’package:stats’:
##
## filter, lag

## The following objects are masked from ’package:base’:
##
## intersect, setdiff, setequal, union

library(ggplot2)
library(rddtools)

## Loading required package: AER

## Loading required package: car

## Loading required package: carData

##
## Attaching package: ’car’

## The following object is masked from ’package:dplyr’:
##
## recode

## Loading required package: lmtest

## Loading required package: zoo

##
## Attaching package: ’zoo’

## The following objects are masked from ’package:base’:
##
## as.Date, as.Date.numeric
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## Loading required package: sandwich

## Loading required package: survival

## Loading required package: np

## Nonparametric Kernel Methods for Mixed Datatypes (version 0.60-11)
## [vignette("np_faq",package="np") provides answers to frequently asked questions]
## [vignette("np",package="np") an overview]
## [vignette("entropy_np",package="np") an overview of entropy-based methods]

##
## Please consider citing R and rddtools,
## citation()
## citation("rddtools")

library(magrittr)
library(haven)
library(rddensity)
library(rdrobust)
library(tidyverse)

## -- Attaching packages --------------------------------------- tidyverse 1.3.2 --

## v tibble 3.1.7 v purrr 0.3.4
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x tidyr::extract() masks magrittr::extract()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x car::recode() masks dplyr::recode()
## x purrr::set_names() masks magrittr::set_names()
## x purrr::some() masks car::some()

library(dplyr)
library(broom)
library(MatchIt)
library(huxtable)

##
## Attaching package: ’huxtable’
##
## The following object is masked from ’package:ggplot2’:
##
## theme_grey
##
## The following object is masked from ’package:dplyr’:
##
## add_rownames

2



library(cobalt)

## cobalt (Version 4.3.2, Build Date: 2022-01-19)
##
## Attaching package: ’cobalt’
##
## The following object is masked from ’package:MatchIt’:
##
## lalonde

Exercise 1 (40%)

alcohol <- read_csv('C:/Users/yuazh/OneDrive - Universitetet i Oslo/Desktop/Teaching/Exam 2022 fall/alcohol.csv')

## New names:
## Rows: 50 Columns: 4
## -- Column specification
## -------------------------------------------------------- Delimiter: "," dbl
## (4): ...1, age, death, threshold
## i Use ‘spec()‘ to retrieve the full column specification for this data. i
## Specify the column types or set ‘show_col_types = FALSE‘ to quiet this message.
## * ‘‘ -> ‘...1‘

1.1 Describe the data (how many variables and observations do you have?) What
are the names of your variables? What are the means of the most relevant
variable?

names(alcohol)

## [1] "...1" "age" "death" "threshold"

dim(alcohol)

## [1] 50 4

summary(alcohol$age)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 19.07 20.08 21.00 21.00 21.92 22.93

summary(alcohol$death)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
## 88.43 92.79 95.69 95.67 98.03 105.27 2
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summary(alcohol$threshold)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0 0.0 0.5 0.5 1.0 1.0

There are 3 variables, named age, death and threshold (note: there is one additional variable has no name).
Students that reports either 3 or 4 variables are given points.

age, death and threshold are the most relevant variables, their means are 21, 95.67 and 0.5 accordingly.

1.2 How many are below the minimum drinking age? Calculate the average
morality for those below the minimum drinking age (hint: you may want to
exclude missing values). Under the regression discontinuity design, what is the
running variable and what is the cutoff, and what is the treatment indicator?
Create a normalized running variable.

table(alcohol$threshold)

##
## 0 1
## 25 25

25 are below the minimum drinking age.

alcohol %>%
group_by(threshold) %>%
summarise(mean(death, na.rm = TRUE))

threshold mean(death, na.rm = TRUE)

0 92.8

1 98.5

The average mortality for those below the minimum drinking age is 92.80270.

The running variable is the respondent’s age, the cutoff is 21 years’ old, and the treatment is eligibility for
drinking alcohol (measured by the threshold variable).

alcohol <-
alcohol %>%
mutate(nor_age = I(age-21))
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1.3 Regress morality on the treatment indicator. What is the interpretation
of the treatment coefficient (e.g., the sign, significance, magnitude)? What are
the identifying assumptions for a causal regression? Based on the identifying
assumptions, can the estimated treatment coefficient be interpreted causal? Why
or why not?

m1 <- lm(death ~ threshold, alcohol)
tidy(m1)

term estimate std.error statistic p.value

(Intercept) 92.8 0.516 180 3.88e-67

threshold 5.74 0.73 7.86 4.77e-10

The threshold variable positive and is statistically significant at 0.1% level. It implies that people who are
21 and more have 5.74 more deaths per 100,000 person year than people who are less than 21.

The identifying assumption that regression can be used to identify causal effect is called selection on ob-
servables assumption (also known as unconfoundedness, ignorability, exogenous selection, or selection on
observables). It implies that are all confounders are observed and can therefore be used as control variables.

The estimated treatment coefficient cannot be interpreted causal because do not have information on the
cofounders and cannot control for them. The treatment may not be randomly assigned.

1.4 What is the identifying assumption in the RDD design? Plot a histogram of
the running variable, assess graphically (use binwidth = 0.2) and formally (use
a formal). Comment on whether there is any threat to the identification.

ggplot(alcohol, aes(x = nor_age, fill = death)) +
geom_histogram(binwidth = 0.2, boundary = 0) +
geom_vline(xintercept = 0)
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#fill allow us to use different colors on each side of the cutoff
#bidwidth allows us to adjust the width of each bar, boundary is a bin position specifier, boundary = 0 means we are forcing a bin break at 0 on the histogram.
#geom_vline can add a vertical line on the plot, and we want the vertical line to be positioned at 0

test_density <- rddensity(alcohol$nor_age, c = 0)
#rddensity() implements manipulation testing procedures using the local polynomial density, c speicifes the threshold or cutoff value in the support of X.

rd_density_plot <- rdplotdensity(rdd = test_density, alcohol$nor_age, type = "both")
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#rdplotdensity() constructs density plots. inside the function, you need to define rdd, it is the object retured by rddensity(), test_density in our case.
#nor_age is our running variable.
#type defines point estimates are plotted, both include line and points.

The identifying assumption of RDD is that observations close to either side of discontinuous shift in treatment
assignment are comparable.

The threat to identification is that the running variable may be manipulated. We can look at the distribution
of the running variable. And check for discontinuity around cutoff and see if there is any bunching of
observations around the cutoff. If there is, then it is the evidence that there is sorting. One way to do this
is to plot a histogram of the running variable, and check whether there are signs of bunching around the
cutoff.

McCrary density test is a formal test for checking whether units are sorting on the running variable. The
density plot shows that there is a tiny gap at the cutoff, but the gap is within the confidence interval within
the both side. There is not a significant difference among the bins in the neighborhood of the cutoff. This
means that the running variable is not manipulated.
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1.5 Plot a scatterplot of the morality rate as a function of the running variable.
Please use different colours on each side of the cut-off, include a linear fit on each
side of the cut-off in your plot, and label your x-axis and y-axis accordingly.
Comment on whether you can see a jump in the morality rate at the cut-off
point.

ggplot(alcohol, aes(x = age, y = death, color = age >= 21)) +
geom_point() +
geom_smooth(data = filter(alcohol, age< 21), formula = y ~ x, method = "lm") +
geom_smooth(data = filter(alcohol, age >= 21), formula = y ~ x, method = "lm") +
ylab("Deaths per 100,000 person-years") + xlab("Age")

## Warning: Removed 1 rows containing non-finite values (stat_smooth).
## Removed 1 rows containing non-finite values (stat_smooth).

## Warning: Removed 2 rows containing missing values (geom_point).

90

95

100

105

19 20 21 22 23
Age

D
ea

th
s 

pe
r 

10
0,

00
0 

pe
rs

on
−

ye
ar

s

age >= 21

FALSE

TRUE

Yes, we can see there is a discontinuous jump in the outcome variable as the running variable crosses the
cutoff.

8



1.6 Now, run a regression of mortality on the treatment indicator and the nor-
malized age variable, and interaction between the normalized age variable and
the treatment indicator. How do you interpret the estimated treatment coeffi-
cient? Can it be interpreted as causal? Why or why not? (Relate your answer
to what you found in 1.4).

m2 <- lm(death ~ threshold+nor_age+nor_age*threshold, data = alcohol)
summary(m2)

##
## Call:
## lm(formula = death ~ threshold + nor_age + nor_age * threshold,
## data = alcohol)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.368 -1.787 0.117 1.108 5.341
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 93.6184 0.9325 100.399 < 2e-16 ***
## threshold 7.6627 1.3187 5.811 6.4e-07 ***
## nor_age 0.8270 0.8189 1.010 0.31809
## threshold:nor_age -3.6034 1.1581 -3.111 0.00327 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 2.283 on 44 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.6677, Adjusted R-squared: 0.645
## F-statistic: 29.47 on 3 and 44 DF, p-value: 1.325e-10

On average, the mortality rate per 100.000 for individuals reaching the minimum drinking age is 7.66 points
higher. It is statistcally significant at 0.1% level.

The result can be interpreted as causal. This is because we do not see evidence that the running variable is
manipulated in 1.4.

1.7 Include a quadratic term in the normalized running variable interacted with
the treatment, and redo 1.6. Has the treatment effect changed compare to the
effect in 1.6? Comment on the size and coefficient of the estimated treatment
effect. What does this tell you?

m3 <- lm(death ~ threshold+nor_age+nor_age*threshold+I(nor_ageˆ2)*threshold, data = alcohol)
summary(m3)

##
## Call:
## lm(formula = death ~ threshold + nor_age + nor_age * threshold +
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## I(nor_age^2) * threshold, data = alcohol)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3343 -1.3946 0.1849 1.2848 5.0817
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 93.0729 1.4038 66.301 < 2e-16 ***
## threshold 9.5478 1.9853 4.809 1.97e-05 ***
## nor_age -0.8306 3.2901 -0.252 0.802
## I(nor_age^2) -0.8403 1.6153 -0.520 0.606
## threshold:nor_age -6.0170 4.6529 -1.293 0.203
## threshold:I(nor_age^2) 2.9042 2.2843 1.271 0.211
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 2.285 on 42 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.6821, Adjusted R-squared: 0.6442
## F-statistic: 18.02 on 5 and 42 DF, p-value: 1.624e-09

Yes, now on average, the mortality rate per 100.000 for individuals reaching the minimum drinking age is
9.55 points higher, which is statistically significant at 0.1% level. The coefficient is bigger than that in 1.6.

The results change because we now use a different functional form (in this question, we use a quadratic from).
We use a quadratic form to allow for the the possibility that the data-generating process was nonlinear.

1.8 Use non-parametric method to estimate the treatment effect. Is your result
same or different from what you got in 1.3? Why do you think are the reasons
that the results are same or different?

rdrobust(y = alcohol$death, x = alcohol$age, c = 21) %>% summary()

## Sharp RD estimates using local polynomial regression.
##
## Number of Obs. 48
## BW type mserd
## Kernel Triangular
## VCE method NN
##
## Number of Obs. 24 24
## Eff. Number of Obs. 6 6
## Order est. (p) 1 1
## Order bias (q) 2 2
## BW est. (h) 0.492 0.492
## BW bias (b) 0.778 0.778
## rho (h/b) 0.633 0.633
## Unique Obs. 24 24
##
## =============================================================================
## Method Coef. Std. Err. z P>|z| [ 95% C.I. ]
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## =============================================================================
## Conventional 9.598 3.592 2.672 0.008 [2.559 , 16.637]
## Robust - - 2.206 0.027 [1.083 , 18.308]
## =============================================================================

#c specifies the RD cutoff in x; default is c = 0

On average, the mortality rate per 100.000 for individuals reaching the minimum drinking age is now 9.595
points higher. It is statistically significant at 1% level.

Results are different because the result from 1.8 is the causal effect (as we found the continuity assumption
holds in 1.4) while that from 1.3 is not.

Exercise 2: The effect of heart treatment (60%)

2.1 Write a short report of the attached paper “The effectiveness of right heart
catheterization in the initial care of critically III patients” by Connors et al
(1996).

The report should include a summary of the paper, and a critical discussion of
the empirical approach. The summary should identify the research questions
that the paper tries to answer, how the paper answers the questions, and the
results (about 1 page). The discussion of the empirical approach should give a
description and critical assessment of the applied methods and its identifying
assumptions.

Focus on the following questions: What are the coefficient(s) of interest(s)?
What is (are) the key identifying assumption(s)? Are the identifying assump-
tions likely to hold? Are there data limitations, and do you have any suggestions
for alternative analyses and sensitivity checks?

This question is an open question that assess the students’ independent and critical thinking. Therefore the
points are given for those who demonstrate their own thinking, in addition to summarize what has been
done by the authors. This question is assessed based on:

1. Be able to address the research question, the method (i.e. ps matching), and the results.

2. Explain the variables of interest (the RHC itself should be key the variables of interest, in addition to
other cofounders.)

3. Explain the key identifying assumption for the PS matching: i.e. the unconfoundedness assumption,
and explain whether it is likely to hold (e.g. why the unobserable variable is not a threat to this
identification). More points given to those who provided reasoning/rationale for why the candidates
believe such assumption will hold or not.

4. Discussion on the limitation with data (e.g. a sample of severely ill patients, small sample size etc.).

5. Suggest for alternative causal method and additional sensitivity tests, higher points given for those why
provide convincing rationale of how the suggested methods/tests are better or how they can overcome
the problem in PS matching.
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2.2 How many patients in the (right heart catheterization) RHC group died?
How many patients in the non RHC group died? Report the average mortality
among patients who received the treatment vs. those who did not receive the
treatment (the treatment variable is called swang1 in the dataset). Which group
has higher mortality? What do you think is the reason for this result? (Hint:
you need numeric variables to do summary statistics).

rhc<- read_csv('C:/Users/yuazh/OneDrive - Universitetet i Oslo/Desktop/Teaching/Exam 2022 fall/heart.csv')

## New names:
## Rows: 5735 Columns: 64
## -- Column specification
## -------------------------------------------------------- Delimiter: "," chr
## (21): cat1, cat2, ca, death, sex, dth30, swang1, dnr1, ninsclas, resp, c... dbl
## (43): ...1, X, sadmdte, dschdte, dthdte, lstctdte, cardiohx, chfhx, deme...
## i Use ‘spec()‘ to retrieve the full column specification for this data. i
## Specify the column types or set ‘show_col_types = FALSE‘ to quiet this message.
## * ‘‘ -> ‘...1‘

rhc %>%
group_by(swang1) %>%
count(death)

## # A tibble: 4 x 3
## # Groups: swang1 [2]
## swang1 death n
## <chr> <chr> <int>
## 1 No RHC No 1315
## 2 No RHC Yes 2236
## 3 RHC No 698
## 4 RHC Yes 1486

1486 patients in the RHC group died. 2236 patients in the non RHC group died.

#our treatment and outcome variables are string.
#convert them into numeric variables
rhc %>%

mutate(treatment = if_else(swang1 == "RHC", 1, 0)) -> rhc

rhc %>%
mutate(died = if_else(death == "Yes", 1, 0)) -> rhc

rhc %>%
filter(treatment==1) %>%
summarize(mean_treat = mean(died)) -> mean_morality_treat

mean_morality_treat

rhc %>%
filter(treatment==0) %>%
summarize(mean_control = mean(died)) -> mean_morality_control

mean_morality_control
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mean_treat

0.68

mean_control

0.63

The average mortality among the RHC patients equals to 0.6804029, and the average mortality among the
non-RHC patients equals to 0.6296818.

The RHC group thus has higher mortality. This is probably due to more severe patients in RHC groups.

2.3 Select some variables you believe affect both treatment and mortality and
estimate the probability of receiving treatment given these variables (i.e., logistic
regression). Explain why do you choose these variables. What do the coefficients
from logistic regression represent? What do your results tell you?

rhc %>%
mutate(men = if_else(sex == "Male", 1, 0)) -> rhc

rhc %>%
mutate( cat_race = as.character(race)) -> rhc

logit <- glm(treatment~age+men+edu+cat_race, family="binomial", rhc)
logit %>% huxreg()

## Warning in huxreg(.): Unrecognized statistics: r.squared
## Try setting ‘statistics‘ explicitly in the call to ‘huxreg()‘

Exactly which variables are not that important, as long as it shows some independent thought and is justified.
Bonus for discussing what are the good and bad control variables. Age should obviously be included. Also
bonus if not just include only the same variables we did in class. Some discussion of trying to capture
variables that indicates severity/frailty.

The coefficient represent the change in the ‘long odds’, which is uninterpretable except for its sign. A positive
coefficient indicate it increase the probability of getting the treatment, and a negative coefficient decreases
the probability of getting the treatment. In the example here, we see that education has a positive and
significant impact on getting the treatment. Men are also more likely to receive the treatment.

2.4 Show the distribution of the propensity score (for those who get the treatment
and those who do not). Discuss your finding from the graph.

rhc <- rhc %>%
mutate(pscore=round(logit$fitted.values, 4),

id=1:nrow(rhc))
list(rhc)
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(1)

(Intercept) -0.771 ***

(0.164)

age -0.003

(0.002)

men 0.184 ***

(0.055)

edu 0.026 **

(0.009)

cat_raceother 0.091

(0.129)

cat_racewhite 0.053

(0.077)

N 5735

logLik -3797.441

AIC 7606.883

*** p < 0.001; ** p < 0.01; * p < 0.05.

## [[1]]
## # A tibble: 5,735 x 70
## ...1 X cat1 cat2 ca sadmdte dschdte dthdte lstctdte death cardiohx
## <dbl> <dbl> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
## 1 1 1 COPD <NA> Yes 11142 11151 NA 11382 No 0
## 2 2 2 MOSF ~ <NA> No 11799 11844 11844 11844 Yes 1
## 3 3 3 MOSF ~ MOSF~ Yes 12083 12143 NA 12400 No 0
## 4 4 4 ARF <NA> No 11146 11183 11183 11182 Yes 0
## 5 5 5 MOSF ~ <NA> No 12035 12037 12037 12036 Yes 0
## 6 6 6 COPD <NA> No 12389 12396 NA 12590 No 0
## 7 7 7 MOSF ~ <NA> Meta~ 12381 12423 NA 12616 No 0
## 8 8 8 ARF Coma No 11453 11487 11491 11490 Yes 0
## 9 9 9 MOSF ~ <NA> Yes 12426 12437 NA 12560 No 0
## 10 10 10 ARF <NA> Yes 11381 11400 NA 11590 No 0
## # ... with 5,725 more rows, and 59 more variables: chfhx <dbl>, dementhx <dbl>,
## # psychhx <dbl>, chrpulhx <dbl>, renalhx <dbl>, liverhx <dbl>,
## # gibledhx <dbl>, malighx <dbl>, immunhx <dbl>, transhx <dbl>, amihx <dbl>,
## # age <dbl>, sex <chr>, edu <dbl>, surv2md1 <dbl>, das2d3pc <dbl>,
## # t3d30 <dbl>, dth30 <chr>, aps1 <dbl>, scoma1 <dbl>, meanbp1 <dbl>,
## # wblc1 <dbl>, hrt1 <dbl>, resp1 <dbl>, temp1 <dbl>, pafi1 <dbl>, alb1 <dbl>,
## # hema1 <dbl>, bili1 <dbl>, crea1 <dbl>, sod1 <dbl>, pot1 <dbl>, ...
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ggplot(rhc, aes(x = pscore, color = swang1)) +
geom_histogram()

## ‘stat_bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.
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Histograms of the propensity score distribution for two groups. The comments should discuss the degree to
which there is overlap.

An good overlap indicates that the probability of getting treatment is similar between the control and the
treatment group. And vice versa.

2.5 Create a matched dataset by using matching without replacement and match
on the propensity score difference. Then assess the balance of the treatment and
control group and plot your results.

m.out <- matchit(treatment~age+men+edu+cat_race, data = rhc, method = "nearest", distance = "glm", replace = FALSE)
#method indicates the matching method to be used. nearest means the nearest neighbor matching.
#distance indicates the distance measure to be used. glm is default for propensenity scores estimated with logistic regression using glm().
#replace indicates whether matching should be done with replacement. False means no

m_data <- match.data(m.out)
#match.data() can extract the matched dataset
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summary(m.out)

##
## Call:
## matchit(formula = treatment ~ age + men + edu + cat_race, data = rhc,
## method = "nearest", distance = "glm", replace = FALSE)
##
## Summary of Balance for All Data:
## Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
## distance 0.3837 0.3791 0.1409 0.9779 0.0417
## age 60.7498 61.7609 -0.0647 0.8175 0.0285
## men 0.5852 0.5390 0.0937 . 0.0462
## edu 11.8564 11.5690 0.0910 1.0147 0.0181
## cat_raceblack 0.1534 0.1647 -0.0315 . 0.0114
## cat_raceother 0.0650 0.0600 0.0204 . 0.0050
## cat_racewhite 0.7816 0.7753 0.0153 . 0.0063
## eCDF Max
## distance 0.0679
## age 0.0703
## men 0.0462
## edu 0.0511
## cat_raceblack 0.0114
## cat_raceother 0.0050
## cat_racewhite 0.0063
##
##
## Summary of Balance for Matched Data:
## Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
## distance 0.3837 0.3836 0.0017 1.0016 0.0005
## age 60.7498 60.8584 -0.0069 0.7904 0.0265
## men 0.5852 0.5842 0.0019 . 0.0009
## edu 11.8564 11.8491 0.0023 1.0144 0.0055
## cat_raceblack 0.1534 0.1474 0.0165 . 0.0060
## cat_raceother 0.0650 0.0682 -0.0130 . 0.0032
## cat_racewhite 0.7816 0.7843 -0.0066 . 0.0027
## eCDF Max Std. Pair Dist.
## distance 0.0064 0.0029
## age 0.0604 1.0582
## men 0.0009 0.4814
## edu 0.0206 0.7313
## cat_raceblack 0.0060 0.6823
## cat_raceother 0.0032 0.4810
## cat_racewhite 0.0027 0.8156
##
## Sample Sizes:
## Control Treated
## All 3551 2184
## Matched 2184 2184
## Unmatched 1367 0
## Discarded 0 0
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love.plot(m.out)

## Warning: Standardized mean differences and raw mean differences are present in the same plot.
## Use the ’stars’ argument to distinguish between them and appropriately label the x-axis.
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plot(m.out)
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Bonus of showing multiple (e.g. eQQ plots, eCDF plots, or density plots of the covariates and histograms or
jitter plots of the propensity score) visual assessments.

Covariate balance shows that the mean difference for the adjusted is around 0 (in blud colour), it implies
the covariates have much better balance after the matching.

In eQQ plots, when values fall on the 45 degree line, the groups are balanced. Above, we can see that almost
all covariates have much better balance after matching than before.

2.6 Estimate the causal effect using the matched dataset you got from 2.5. In-
terpret the estimated treatment coefficient.

lm(died ~ treatment, data = m_data) %>% huxreg()

The treatment effect is positive and significant at 0.1%. Thus, RHC is associated with increased morality.
This is probably due to inadequate adjustment for severity.

Note that the treatment coefficient from a LPM cannot be directly interpreted as percentage: getting RHC
is estimated to increase the probability of death by 0.068 (according to this regression output). If one has
to interpret the coefficient as percentage, then the interpretation should be: an change in the probability of
getting RHC by 0.1 is estimated to increase the probability of death by 0.68% (0.068*0.1*100).
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(1)

(Intercept) 0.613 ***

(0.010)

treatment 0.068 ***

(0.014)

N 4368

R2 0.005

logLik -2963.166

AIC 5932.333

*** p < 0.001; ** p < 0.01; * p < 0.05.

2.7 Redo step 2.5 and 2.6 by using exact matching (Hint: read carefully the
feature of the exact matching, you would need to do some data preparation
before the matching). Evaluate and compare the results with those in 2.6.

Exact matching only matches treated and controlled individuals who have identical covariate values. It
suffers from the curse of dimensinality. If one choose many variables and have continuous variables, one has
to categorize them into categorical variables. Otherwise, many units without the exactly the same values
will be dropped from the analysis, and with many few units remain, the estimated effects will lack prevision
and cannot be generalize to the population.

Example of converting variables into categorical variables:

rhc$cat_age <- cut(rhc$age,
breaks=c(0, 20, 40, 60, 80, 100, 120),
labels=c('Blow 20', '20-40', '40-60', '60-80', '80-100', '120'))

rhc$cat_edu <- cut(rhc$edu,
breaks=c(-5, 0, 5, 10, 15, 20, 25, 30),
labels=c('-5-0', '0-5','5-10','10-15','15-20','20-25','25-30'))

#check if the following variables contains missing values
sum(is.na(rhc$cat_edu))

## [1] 0

sum(is.na(rhc$cat_age))

## [1] 0

sum(is.na(rhc$men))

## [1] 0
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sum(is.na(rhc$treatment))

## [1] 0

m.out_2 <- matchit(treatment~cat_age+men+cat_edu+cat_race, data = rhc, method = "exact")

m_data_2 <- match.data(m.out_2)

summary(m.out_2)

##
## Call:
## matchit(formula = treatment ~ cat_age + men + cat_edu + cat_race,
## data = rhc, method = "exact")
##
## Summary of Balance for All Data:
## Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
## cat_ageBlow 20 0.0037 0.0070 -0.0559 . 0.0034
## cat_age20-40 0.1140 0.1284 -0.0453 . 0.0144
## cat_age40-60 0.2995 0.2672 0.0703 . 0.0322
## cat_age60-80 0.5064 0.4565 0.0998 . 0.0499
## cat_age80-100 0.0760 0.1402 -0.2424 . 0.0642
## cat_age120 0.0005 0.0006 -0.0049 . 0.0001
## men 0.5852 0.5390 0.0937 . 0.0462
## cat_edu-5-0 0.0046 0.0059 -0.0198 . 0.0013
## cat_edu0-5 0.0234 0.0259 -0.0169 . 0.0026
## cat_edu5-10 0.2550 0.2709 -0.0364 . 0.0159
## cat_edu10-15 0.5870 0.5841 0.0060 . 0.0029
## cat_edu15-20 0.1236 0.1084 0.0462 . 0.0152
## cat_edu20-25 0.0060 0.0042 0.0225 . 0.0017
## cat_edu25-30 0.0005 0.0006 -0.0049 . 0.0001
## cat_raceblack 0.1534 0.1647 -0.0315 . 0.0114
## cat_raceother 0.0650 0.0600 0.0204 . 0.0050
## cat_racewhite 0.7816 0.7753 0.0153 . 0.0063
## eCDF Max
## cat_ageBlow 20 0.0034
## cat_age20-40 0.0144
## cat_age40-60 0.0322
## cat_age60-80 0.0499
## cat_age80-100 0.0642
## cat_age120 0.0001
## men 0.0462
## cat_edu-5-0 0.0013
## cat_edu0-5 0.0026
## cat_edu5-10 0.0159
## cat_edu10-15 0.0029
## cat_edu15-20 0.0152
## cat_edu20-25 0.0017
## cat_edu25-30 0.0001
## cat_raceblack 0.0114
## cat_raceother 0.0050
## cat_racewhite 0.0063
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##
##
## Summary of Balance for Matched Data:
## Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
## cat_ageBlow 20 0.0032 0.0032 0 . 0
## cat_age20-40 0.1150 0.1150 0 . 0
## cat_age40-60 0.2996 0.2996 0 . 0
## cat_age60-80 0.5069 0.5069 0 . 0
## cat_age80-100 0.0753 0.0753 0 . 0
## cat_age120 0.0000 0.0000 0 . 0
## men 0.5854 0.5854 0 . 0
## cat_edu-5-0 0.0023 0.0023 0 . 0
## cat_edu0-5 0.0212 0.0212 -0 . 0
## cat_edu5-10 0.2562 0.2562 0 . 0
## cat_edu10-15 0.5914 0.5914 0 . 0
## cat_edu15-20 0.1247 0.1247 0 . 0
## cat_edu20-25 0.0042 0.0042 0 . 0
## cat_edu25-30 0.0000 0.0000 0 . 0
## cat_raceblack 0.1519 0.1519 0 . 0
## cat_raceother 0.0619 0.0619 0 . 0
## cat_racewhite 0.7862 0.7862 0 . 0
## eCDF Max Std. Pair Dist.
## cat_ageBlow 20 0 0
## cat_age20-40 0 0
## cat_age40-60 0 0
## cat_age60-80 0 0
## cat_age80-100 0 0
## cat_age120 0 0
## men 0 0
## cat_edu-5-0 0 0
## cat_edu0-5 0 0
## cat_edu5-10 0 0
## cat_edu10-15 0 0
## cat_edu15-20 0 0
## cat_edu20-25 0 0
## cat_edu25-30 0 0
## cat_raceblack 0 0
## cat_raceother 0 0
## cat_racewhite 0 0
##
## Sample Sizes:
## Control Treated
## All 3551 2184
## Matched (ESS) 3158 2166
## Matched 3461 2166
## Unmatched 90 18
## Discarded 0 0

love.plot(m.out_2)
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Points are given to giving explanations for table of the summary of balance, plot of covariate balance, and
bonus for using multiple (e.g. eQQ plots, eCDF plots, or density plots of the covariates and histograms or
jitter plots of the propensity score) visual assessments.

lm(died ~ treatment, data = m_data_2) %>% huxreg()

(1)

(Intercept) 0.630 ***

(0.008)

treatment 0.049 ***

(0.013)

N 5627

R2 0.003

logLik -3814.520

AIC 7635.040

*** p < 0.001; ** p < 0.01; * p < 0.05.

The treatment effect is positive and significant at 0.1%. According to this estimation results, getting RHC
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is estimated to increase the probability of death by 0.049 (or a change in the probability of getting RHC is
estimated to increase the probability of death by 0.49%).

The magnitude is smaller than that in 2.6 (where the treatment coefficient is equal to 0.068). In both 2.6
and 2.7, we just go ahead estimate the treatment effect by assuming we can’t get better balance.

Causal conclusions in practice shouldn’t depend on just the two approaches we’ve tried. We should test
other methods to see if we can get better balance: for instance, trying matching with replacement, make the
PS estimating function more flexible, try a totally different matching method.
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